import pandas as pd14 Reshape
14.1 Long to wide
Example 1:
dat_long = pd.DataFrame({"ID":[1, 2, 3, 1, 2, 3, 1, 2, 3],
"Fruit":["mango", "mango", "mango",
"banana", "banana", "banana",
"tangerine", "tangerine", "tangerine"],
"Score":[1.1, 2.1, 3.1, 1.2, 2.2, 3.2, 1.3, 2.3, 3.3]})
dat_long| ID | Fruit | Score | |
|---|---|---|---|
| 0 | 1 | mango | 1.1 |
| 1 | 2 | mango | 2.1 |
| 2 | 3 | mango | 3.1 |
| 3 | 1 | banana | 1.2 |
| 4 | 2 | banana | 2.2 |
| 5 | 3 | banana | 3.2 |
| 6 | 1 | tangerine | 1.3 |
| 7 | 2 | tangerine | 2.3 |
| 8 | 3 | tangerine | 3.3 |
Usage: pd.pivot(df, index, columns, values)
pd.pivot(dat_long,
index = "ID",
columns = "Fruit",
values = "Score")| Fruit | banana | mango | tangerine |
|---|---|---|---|
| ID | |||
| 1 | 1.2 | 1.1 | 1.3 |
| 2 | 2.2 | 2.1 | 2.3 |
| 3 | 3.2 | 3.1 | 3.3 |
Example 2:
dat_long = pd.DataFrame({
"Account_ID": [8001, 8002, 8003, 8004, 8001, 8002, 8003, 8004,
8001, 8002, 8003, 8004, 8001, 8002, 8003, 8004],
"Age": [67.8017038366664, 42.9198507293701, 46.2301756642422,
39.665983196671, 67.8017038366664, 42.9198507293701,
46.2301756642422, 39.665983196671, 67.8017038366664,
42.9198507293701, 46.2301756642422, 39.665983196671,
67.8017038366664, 42.9198507293701, 46.2301756642422,
39.665983196671],
"Admission": ["ED", "Planned", "Planned", "ED", "ED", "Planned",
"Planned", "ED", "ED", "Planned", "Planned", "ED", "ED",
"Planned", "Planned", "ED"],
"Lab_key": ["RBC", "RBC", "RBC", "RBC", "WBC", "WBC", "WBC", "WBC",
"Hematocrit", "Hematocrit", "Hematocrit", "Hematocrit",
"Hemoglobin", "Hemoglobin", "Hemoglobin", "Hemoglobin"],
"Lab_value": [4.63449321082268, 3.34968550627897, 4.27037213597765,
4.93897736897793, 8374.22887757195, 7612.37380499927,
8759.27855519425, 6972.28096216548, 36.272693147236,
40.5716317809522, 39.9888624177955, 39.8786884058422,
12.6188444991545, 12.1739747363806, 15.1293426442183,
14.8885696185238]
})
dat_long| Account_ID | Age | Admission | Lab_key | Lab_value | |
|---|---|---|---|---|---|
| 0 | 8001 | 67.801704 | ED | RBC | 4.634493 |
| 1 | 8002 | 42.919851 | Planned | RBC | 3.349686 |
| 2 | 8003 | 46.230176 | Planned | RBC | 4.270372 |
| 3 | 8004 | 39.665983 | ED | RBC | 4.938977 |
| 4 | 8001 | 67.801704 | ED | WBC | 8374.228878 |
| 5 | 8002 | 42.919851 | Planned | WBC | 7612.373805 |
| 6 | 8003 | 46.230176 | Planned | WBC | 8759.278555 |
| 7 | 8004 | 39.665983 | ED | WBC | 6972.280962 |
| 8 | 8001 | 67.801704 | ED | Hematocrit | 36.272693 |
| 9 | 8002 | 42.919851 | Planned | Hematocrit | 40.571632 |
| 10 | 8003 | 46.230176 | Planned | Hematocrit | 39.988862 |
| 11 | 8004 | 39.665983 | ED | Hematocrit | 39.878688 |
| 12 | 8001 | 67.801704 | ED | Hemoglobin | 12.618844 |
| 13 | 8002 | 42.919851 | Planned | Hemoglobin | 12.173975 |
| 14 | 8003 | 46.230176 | Planned | Hemoglobin | 15.129343 |
| 15 | 8004 | 39.665983 | ED | Hemoglobin | 14.888570 |
Usage: pd.pivot(df, index, columns, values)
pd.pivot(dat_long,
index = ["Account_ID", "Age", "Admission"],
columns = "Lab_key",
values = "Lab_value")| Lab_key | Hematocrit | Hemoglobin | RBC | WBC | ||
|---|---|---|---|---|---|---|
| Account_ID | Age | Admission | ||||
| 8001 | 67.801704 | ED | 36.272693 | 12.618844 | 4.634493 | 8374.228878 |
| 8002 | 42.919851 | Planned | 40.571632 | 12.173975 | 3.349686 | 7612.373805 |
| 8003 | 46.230176 | Planned | 39.988862 | 15.129343 | 4.270372 | 8759.278555 |
| 8004 | 39.665983 | ED | 39.878688 | 14.888570 | 4.938977 | 6972.280962 |
14.2 Wide to Long
dat_wide = pd.DataFrame({"ID":[1, 2, 3],
"mango":[1.1, 2.1, 3.1],
"banana":[1.2, 2.2, 3.2],
"tangerine":[1.3, 2.3, 3.3]})
dat_wide| ID | mango | banana | tangerine | |
|---|---|---|---|---|
| 0 | 1 | 1.1 | 1.2 | 1.3 |
| 1 | 2 | 2.1 | 2.2 | 2.3 |
| 2 | 3 | 3.1 | 3.2 | 3.3 |
Usage: pd.melt(df, id_vars, value_vars, var_name, value_name)
pd.melt(dat_wide,
id_vars = "ID",
value_vars = ['mango', "banana", "tangerine"],
var_name = "Fruit",
value_name = "Value")| ID | Fruit | Value | |
|---|---|---|---|
| 0 | 1 | mango | 1.1 |
| 1 | 2 | mango | 2.1 |
| 2 | 3 | mango | 3.1 |
| 3 | 1 | banana | 1.2 |
| 4 | 2 | banana | 2.2 |
| 5 | 3 | banana | 3.2 |
| 6 | 1 | tangerine | 1.3 |
| 7 | 2 | tangerine | 2.3 |
| 8 | 3 | tangerine | 3.3 |
In the above example, value_vars can be ommitted: all columns other than those defined as ids will be used.
wide_to_long() uses melt() under the hood, and supposed to be more user-friendly - is not.
Example 2:
dat_wide = pd.DataFrame({
"Account_ID": [8001, 8002, 8003, 8004],
"Age": [67.8017038366664, 42.9198507293701, 46.2301756642422,
39.665983196671],
"RBC": [4.63449321082268, 3.34968550627897, 4.27037213597765,
4.93897736897793],
"WBC": [8374.22887757195, 7612.37380499927, 8759.27855519425,
6972.28096216548],
"Hematocrit": [36.272693147236, 40.5716317809522, 39.9888624177955,
39.8786884058422],
"Hemoglobin": [12.618444991545, 12.1739747363806, 15.1293426442183,
14.8885696185238],
"Admission": ["ED", "Planned", "Planned", "Planned"]
})
dat_wide| Account_ID | Age | RBC | WBC | Hematocrit | Hemoglobin | Admission | |
|---|---|---|---|---|---|---|---|
| 0 | 8001 | 67.801704 | 4.634493 | 8374.228878 | 36.272693 | 12.618445 | ED |
| 1 | 8002 | 42.919851 | 3.349686 | 7612.373805 | 40.571632 | 12.173975 | Planned |
| 2 | 8003 | 46.230176 | 4.270372 | 8759.278555 | 39.988862 | 15.129343 | Planned |
| 3 | 8004 | 39.665983 | 4.938977 | 6972.280962 | 39.878688 | 14.888570 | Planned |
Usage: pd.melt(df, id_vars, value_vars, var_name, value_name)
pd.melt(dat_wide,
id_vars = ["Account_ID", "Age", "Admission"],
value_vars = ["RBC", "WBC", "Hematocrit", "Hemoglobin"],
var_name = "Lab",
value_name = "Value")| Account_ID | Age | Admission | Lab | Value | |
|---|---|---|---|---|---|
| 0 | 8001 | 67.801704 | ED | RBC | 4.634493 |
| 1 | 8002 | 42.919851 | Planned | RBC | 3.349686 |
| 2 | 8003 | 46.230176 | Planned | RBC | 4.270372 |
| 3 | 8004 | 39.665983 | Planned | RBC | 4.938977 |
| 4 | 8001 | 67.801704 | ED | WBC | 8374.228878 |
| 5 | 8002 | 42.919851 | Planned | WBC | 7612.373805 |
| 6 | 8003 | 46.230176 | Planned | WBC | 8759.278555 |
| 7 | 8004 | 39.665983 | Planned | WBC | 6972.280962 |
| 8 | 8001 | 67.801704 | ED | Hematocrit | 36.272693 |
| 9 | 8002 | 42.919851 | Planned | Hematocrit | 40.571632 |
| 10 | 8003 | 46.230176 | Planned | Hematocrit | 39.988862 |
| 11 | 8004 | 39.665983 | Planned | Hematocrit | 39.878688 |
| 12 | 8001 | 67.801704 | ED | Hemoglobin | 12.618445 |
| 13 | 8002 | 42.919851 | Planned | Hemoglobin | 12.173975 |
| 14 | 8003 | 46.230176 | Planned | Hemoglobin | 15.129343 |
| 15 | 8004 | 39.665983 | Planned | Hemoglobin | 14.888570 |